Heat Capacity and Thermodynamic Properties of LaBr $_{\!3}$ at $300-1100~{\rm K}$

L. Rycerz, E. Ingier-Stocka, B. Ziolek, S. Gadzuric a,b, and M. Gaune-Escard b

Institute of Inorganic Chemistry and Metallurgy of Rare Elements, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

^a Faculty of Natural Science, Department of Chemistry, University of Novi Sad,

Trg D. Obradovica 3, 21000 Novi Sad, Serbia & Montenegro

Ecole Polytechnique, Mecanique & Energetique, Technopole de Chateau–Gombert,
5 rue Enrico Fermi, 13453 Marseille Cedex 13, France

Reprint requests to M. G-E., Fax: +33(0)4 91 11 74 39, E-mail: Marcelle.Gaune-Escard@polytech.univ-mrs.fr

Z. Naturforsch. **59a**, 825 – 828 (2004); received August 2, 2004

The heat capacity of solid and liquid LaBr₃ was measured by Differential Scanning Calorimetry (DSC) in the temperature range 300-1100 K. The obtained results were fitted by a polynomial temperature dependence. The enthalpy of fusion of LaBr₃ was also measured. By combination of these results with the literature data on the entropy, $S_{\rm m}^0({\rm LaBr_3}, {\rm s}, 298.15~{\rm K})$ and the standard molar enthalpy of formation, $\Delta_{\rm form} H_{\rm m}^0({\rm LaBr_3}, {\rm s}, 298.15~{\rm K})$, the thermodynamic functions of lanthanum tribromide were calculated up to 1300 K.

Key words: Heat Capacity; Lanthanum Bromide; Enthalpy of Fusion; Thermodynamic Functions.

1. Introduction

Numerous experimental investigations were conducted on the lanthanide chlorides (LnCl₃) and their mixtures with alkali chlorides (LnCl₃-MCl). The enthalpy variation and heat capacity were measured over a wide temperature range of these solid and liquid chlorides [1-4], as well as for several stoichiometric M_x LnCl_{3+x} compounds [5-8] that exist in most LnCl₃-MCl mixtures. Enthalpies of mixing were also determined [9-13]. Some investigation performed on lanthanide bromides and lanthanide bromide – alkali metal bromide systems were also carried out [14-20]. This work continues our general research program on lanthanide halides, and their mixtures with alkali metal halides, and it presents thermodynamic properties of pure lanthanum(III) bromide.

2. Experimental

2.1. Chemicals

Lanthanum(III) bromide was prepared from lanthanum(III) oxide in a manner similar to that described previously [15]. No insoluble matter was found on dissolving it in water. The chemical analysis of the syn-

Table 1. Chemical analysis of LaBr₃.

Compound	Br _{experimental}	Br _{theoretical}	La _{experimental}	La _{theoretical}
	mass %	mass %	mass %	mass %
LaBr ₃	63.30	63.31	36.70	36.69

thesised LaBr₃ was performed by titration methods for bromide (mercurimetric) and lanthanide (complexometric). These results are presented in Table 1.

Synthesized LaBr₃ was handled in an argon glove box with a measured volume fraction of water of about 2×10^{-6} and continuous gas purification by forced recirculation through external molecular sieves.

2.2. Measurements

The heat capacities were measured with a SE-TARAM DSC 121 differential scanning calorimeter. The apparatus and the measurements procedure were described in [2]. Quartz cells (7 mm diameter and 15 mm length) were filled with lanthanum bromide in a glove box, sealed under vacuum, and then placed into the DSC 121 calorimeter.

Enthalpy of transition measurements were carried out with heating and cooling rates between 1 and 5 $\rm K\,min^{-1}$.

0932-0784 / 04 / 1100-0825 \$ 06.00 © 2004 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com